. . .
@, o9
;i - :.... . .
..'. . 6"’-".0.. % " . . *
.: 0.“..'0 K *
o." . . o ¢ + . 4’. .' *
.". ¢ o" o % o‘
-‘. . .-. ® ‘. . R
. - e WL
. " '* -;.'
QL

% * . Tech Challenger series °

' . P by Kwork Innovations - +

WOk

Innovaatiot

Antti Torronen is a Microsoft Certified Professional Developer with a long
experience in web development starting mid-90’s with Pascal and moving on to
Microsoft ASP in late-90’s. After a career in e-commerce and distribution he is
currently team lead in a technology company building web service ecosystems
based on patented technology.

Kwork Innovations

Kwork Innovations is a challenger in the web technology space. We aim to
stop boring websites. Say yes to cloud services that serve!

A
01101110
1000711 k4

x
01101001
01110100
101
101001 0111010
10110 011
1
110 011000
0 110110

il \Vicrosoft
M Azure

CERTIFIED CERTIFIED
Professional Technology
Devaloger Specialist

A Google

ANALYTICS

HDIVID!

Secure Software Development
Kwork Innovation was the first company in Finland to achieve Development Process
Security Certificate at Level 2. The audit was done by 2NS.

Code Quality from Finland

Kwork is a member of Code From Finland community, National Software Association,
Chamber of Commerce, as well as a registered Microsoft Partner. Our team has been
working with web for a long time — all the way from 1996. In current form we've operated
since 2014

Strong Research & Development focus

Our digitalization platform has been granted the first patent, with others pending. Our
research and development efforts have gained multiple grants and participation in
various support programs. You may have seen our products at TechCrunch Disrupt, Aalto
Make It Digital, NFOpen, Start TLV Helsinki and Slush among others.

Strong hosting
We use Microsoft Azure for cloud hosting as well as dedicated Windows Servers for fast,
secure and scalable hosting.

Certified Expertise

Web communications and web technology are a wide area of topics. We believe it is
important to have a professional understanding of the topics. To demonstrated
professionalism we are certified in multiple Microsoft technologies, Google Analytics and
Adwords and Inbound marketing among others.

Innovaatiot

"We should forget about small
efficiencies, say about 97% of the
time: premature optimization is the
root of all evil. Yet we should not
pass up our opportunities in that
critical 3%"

ARE YoU FREFATURELY
OPTMIZNG OR JUST TAKING
TME L0 THINGS RGHT P

Come on! Premature
optimization feels so
good! Just do it!

WOk

Innovaatiot

Case Study

Improving data access

This is a case study based on code review of a ASP.NET MVC 5 website
experiencing slow performance. The purpose is to introduce various techniques for
improving data access through Entity Framework. Each method is demonstrated
within the same project to exemplify that numerous options exists. The correct
course of action depends on a variety of situational elements, most notably the
complexity of data structures and the amount of data fetched.

7 methods and 3 bonus methods for improving performance are introduced. The
case was solved by combination of these methods, except 1-3. Methods 1-3 are
introduced as they may be suitable in other cases.

Case description

The website is a specialty blog with 50-250 articles. Each
article includes also images, list of references and links.
In addition, each article is categorized to 1 or more
categories.

The problem is identified in main page of the site. This
page includes buttons for showing the different articles
dynamically after clicking. The current load time for the
page is 10-30 seconds.

Current flow of the page is:

— Fetch all articles from database

— Fetch all links, images and categories for each article

— Add the article, links, images and categories to a list in
a View Model

— All articles are set on the page as hidden div's which
are dynamically shown based on user actions

The purpose of this approach has been to make the
website a single page application without need for page
reloads.

However, this approach had made the site very slow to

download, mostly due to

— The page is heavy to download

— Over 200 sequential SQL queries are observed in Visual
Studio

Screenshot from Events window in

Visual Studio debug mode shows
hundreds of database calls

Innovaatiot

Starting point

Code to be refactored

/// <summary>

/// Get the main view with published articles

/// </summary>

/// <returns>the articles in single page app format</returns>

pubTlic ActionResult Index()

{
List<Data.Article> articlesByAdmin = this.db.Articles

.Where(a => a.PublishStatus == Status.AdminPublished).ToList();

List<Data.Attachment> images = new List<Attachment>();
List<Data.Link> 1inks = new List<Link>(Q);
List<MainVM> articles = new List<MainvM>();
List<Data.Category> searchTerms = new List<Category>();

foreach (Data.Article a in articlesByAdmin)

{

article = new MainwvMm

{

Description = a.Description;
o000

};

images = this.db.Attachments
.Where(t => t.Article.Id a.Id).ToList();
article.ImageURLsS = images;

1inks = this.db.Links
.Where(l => 1.Article.Id a.Id).ToList();
article.Links = 1links;

searchTerms = this.db.Categories
.Where(t => t.Article.Id a.Id).ToList();
List<string> terms = new List<string>Q;

foreach (var t in searchTerms)

{
}

article.SearchTerms = terms;

terms.Add(t.CategoryName);

articles.Add(article);
}

art.Articles = articles;
return View(art);

Innovaatiot

Method 1: .Select()

Limit number of fields fetched

In some cases the database contains a lot of data that is not needed all the time. In
case of articles or blogs a common task is to only list the titles of the blog posts.
There is no need to fetch large amount of data from the text section!

Use .Select() method. Select() will allow you to create a new object, and select
which properties you will need to fetch. The result of .Select() is a new query tree,
IQueryable. This will be compiled to SQL and executed when you call one of the
non-deferred methods, e.g. .ToList(), .Single(), .First()

When using .select() you can either use the EF entity class, or you can create your
own class. If you need just a single element, use .select(o => o.Title).ToList()
to geta List<T> where T is the type for o.Name. This example will result in a
List<string> containing titles.

In the example, we are fetching the data directly to the view model for Article.

articlesByAdmin = this.db.Articles
.Where(a => a.PublishStatus == Status.AdminPublished)
.Select(a => new ArticlevM

{
ArticleId = a.Id,

ArticleTitle = a.Title
1)

Do this only when you know which fields are needed.
Avoid doing this when you are still unsure about the
needed fields

Innovaatiot

Method 2: Parallel.For & Parallel.ForEach

Parallel looping

The code contains a loop which is run sequentially — a single SQL command must
be executed before beginning the next one.

.NET 4.5. provides Task Parallel Library TPL, which has some easy and cool
functions for parallel programming. The main concern is that all shared data
structures must be thread-safe, which is indicated in MSDN documentation for the
.NET library. DataContext is not thread-safe. Thus, we must create a new
DataContext for each iteration.

The below code replaces the for loop with a parallel loop. The number of
simultaneous threads depends on the number of cores available. You may also set
the number manually in a overload of the ForEach function. The optimal number of
threads depends on how much CPU intensive the function is (or how long each
iteration is waiting for other 1/0 operations)

As these are easy to use function it is also very easy run parallel loop within a
parallel loop - thus slowing the performance with high number of threads.

Parallel.ForEach(articlesByAdmin, (Data.Article a) =>

{

article = new MainvM

Description = a.Description;
eoo

I

Articlebb db = new Articlebb();

images = db.Attachments
.Where(t => t.Article.Id == a.Id).ToList(Q;
article.ImageURLs = images;

articles.Add(article);

Innovaatiot

Method 3: ToListAsync()

Asynchronous SQL calls

Entity Framework 6 allows for asynchronous calls. The asynchronous calls are best
for starting a data call, and then doing other CPU intensive operations while waiting
for the return. Data Context support only one operation at a time, thus we need to
create separate data contexts for each asynchronous call.

.ToListAsync() returns a Task object. A Task object has a property called .Result.
Accessing this property will wait for the result to complete, and then returns the
call.

Articlebb dbl hew Articlebb();
Articlebb db2 hew Articlebb();
Articlebb db3 hew Articlebb();

Task<List<Attachment>> images = dbl.Attachments
.Where(t => t.Article.Id == a.Id).ToListAsync();
Task<List<Link>> 1links = db2.Links
.Where(l => 1.Article.Id == a.Id).ToListAsync();
Task<List<Category>> searchTerms = db3.Categories
.Where(t => t.Article.Id == a.Id).ToListAsync();

article.ImageURLs = images.Result;

article.Links = Tinks.Result;

List<string> terms = searchTerms.Result
.Select(o => o.CategoryName).ToList();

article.SearchTerms = terms;

Innovaatiot

Method 4: Include()

Fetch all data at once

Entity Framework allows to fetch related data from different entity sets using the
JInclude() method. Include() will modify the query tree so that when the call is
executed at .ToList() the related data is also fetched. This way, you can access
article.LinkSet without any further database calls.

List<T> is thread-safe you a might further optimize the below by using Parallel.For if
you have unused CPU cores (observe CPU usage)

articlesByAdmin = this.db.Articles
.Where(a => a.PublishStatus == Status.AdminPublished)
.Include("AttachmentSet")
.Include("CategorySet")
.Include("LinkSet")
.ToList();

foreach(Article article in articlesByAdmin)

{

article = new MainvM(Q)

{
Links = a.LinkSet.Select(O => o.Url).ToList),
Description = a.Description;

For the .Include() method to work the EF model must know about the connections
between tables. In this case, we had to add the following snippet to Code-first
model, because the current code used a manual way to fetch related items using
the foreign key (Articleld). A model-first approach would need drawing the
connection.

The below will also allow lazy-loading. If you fetch AttachmentSet without the above
JInclude() method run earlier a new data access call is made to fetch the data. This
is an important concepts to understand. Lazy-loading without .Include() might
cause a large number of unnecessary database calls because the data is fetched
only at the time when needed.

public virtual ICollection<Attachment> AttachmentSet { get; set; }

public virtual ICollection<Link> LinkSet { get; set; }

public virtual ICollection<Category> CategorySet { get; set; }

We prefer using Set suffix instead of plural forms for collections. A collection of categories is called CategorySet.

Innovaatiot

Method 4: [OutputCache]

Use output cache

The most powerful cache on the server is the output cache. This cache stores the
result of the Action method, and thus it does not need to be executed on each call.

Output cache in enabled in web.config, IIS settings or with [OutputCache]
annotation. The annotation allow for setting the duration of cache in settings and
having different outputs based on one of the Action method parameters.

There is a caveat, though. There is not easy way to invalidate the output cache
when the contents of the database change. It is best to set the duration to fairly
low, and only enable output caching on high traffic sites with no or few dynamic
elements. Also, avoid caching pages with personal data — or at least, disable
caching headers so browser or proxies wont store the page.

“There are only two hard things in Computer
Science: cache invalidation and naming things.”
— a popular saying, possibly by Phil Karlton

/// <summary>
/// Get the main view with published articles
/// </summary>

/// <returns>the articles in single page app format</returns>
[OutputCache(Duration=60, VaryByParam=""none")]

public ActionResult Index()

{

Output cache may introduce problems with the site
not reflecting latest updates. Avoid using output
cache until you know which should be the
parameters to vary based on.

Innovaatiot

Method 5: MemoryCache

Use object cache

All object can be stored on a cache on the web server. The cache must fit in the
RAM so you may want to observe RAM usage on the server. My experience has
been though that many web servers have plenty unused RAM, and use of object
cache could improve performance and take some load of the SQL server.

.NET has a abstract class ObjectCache which you may inherit to create your own
variations. .NET in-memory cache implementation is called MemoryCache. It's use
is simple: try to fetch from MemoryCache. If the return is null, then make the
database call and add to cache for the next call.

MemoryCache supports multiple invalidation methods: absolute expiration, sliding
expiration, and change track elements. In this simple example, we will simply use a
sliding expiration.

ObjectCache cache = MemoryCache.Default;
List<Data.Article> articlesByAdmin =

cache["articles"] as List<Data.Article>;

if (articlesByAdmin == null)

articlesByAdmin = this.db.Articles
.Where(a => a.PublishStatus == Status.AdminPublished)
.Include("Attachments")
.Include("cCategories")
.Include("Links")
.ToList();

CacheItemPolicy policy = new CacheItemPolicy()
{ SlidingExpiration = new TimeSpan(0, 0, 60) };

cache.set("articles", articlesByAdmin, policy);

// Use MemoryCache.Default.Remove("articles");
// to clear cache when database if updated

Use of output cache requires that whenever
database is updated the cache is cleared. If you the
database is updated from multiple sources you may
introduce new problems

Innovaatiot

Method 6: Select() with sub-queries

Select all & only needed fields

LINQ is powerful! A Internet joke is that the worst part of .NET is that you will want
to spend the whole day rewriting the whole program in a single LINQ statement just
because you can. In fact, most of the LINQ commands return a query tree
(IQuerable) which is then executed and compiled. This allows to write subqueries.
In this examples we replace the for loop by including subqueries in the main call.

We are using LINQ method syntax. For more complex queries, see LINQ statement
syntax which resembles SQL.

articlesByAdmin = this.db.Articles

.Where(a => a.PublishStatus == Status.AdminPublished)
.Select(a => new MainvMm

{
ArticleId = a.Id,
ArticleTitle = a.Title,
Articleurl = a.FriendlyURL,

ArticleDescription = a.Description,
PublishStatus = a.PublishStatus,
Language = a.lLanguage,

}).ToList();

Innovaatiot

Method 7:

AJAX calls

In this case, the most obvious way to improve performance is to delay the database calls
for articles to the point when client requests them. This is called AJAX: Asynchronous
JavaScript and XML. When the user clicks on a "Show article” button a JavaScript call is
made to request the article data from the server. For brevity, we use Jquery on client-
side. Remember to install Jquery library, or see youmightnotneedjquery.com to adapt the
code.

AJAX calls are a good option when only part of the data is visible until user requests it,
there is a stable Internet connection and there is large number of data (e.g. long articles).
The disadvantage of AJAX call it that the web server must respond to a new HTTP
request every time the users wants to see another element.

The below sample show the JavaScript syntax on the page and the ASP.NET method
used for returning the AJAX data.

public ActionResult GetArticle(int id)

{
// Not cached currently, but object cache should
// be considered due to low number
// of articles (<500) which will fit in RAM

ArticlevM article = this.db.Articles
.Where(a => a.Id == id)
.Select(a => new ArticlevM
{
ArticleId = a.Id,
Title = a.Title,
Url = a.FriendlyURL,
Description = a.Description,
PublishStatus = a.PublishStatus,
Language = a.lLanguage,
Links = a.Links.ToList(),
ImageURLs = a.Attachments.ToList(),
SearchTerms = a.Categories
.Select(o => o.CategoryName)
.ToList()
i3]
.Single(Q);
return Json(article, JsonRequestBehavior.AllowGet);

Innovaatiot

Below is the JavaScript call used for making the AJAX call and updating the retrieved
data in correct locations.

@* Get elements used for the article *@

var articleTitle = document.getElementsByClassName(”’title");

var articleContent = document.getElementsByClassName(”content");
var articleLinks = document.getElementsByClassName(”1inks");

var articleImages = document.getElementById(”’images");

$.ajax({
url: "/Content/GetArticle",
type: "POST",
data: JSON.stringify({ 'id': id}),
dataType: "json",
traditional: true,
contentType: "application/json; charset=utf-8",
success: function (data) {

@*Looping through in case there are multiple
elements needs to be updated*@

for(var i = 0, Ten = articleTitle.length; i < Tlen; i++) {
articleTitle[i].innerText = data.Title;

}

for(var i = 0, Ten = articleContent.length; i < len; i++) {
articleContent[i].innerHTML = data.Description;

}

for(var i = 0, Ten = articleLinks.length; i < Ten; i++) {
articleLinks[i].innerHTML = getLinks(data.Links);

}

articleImages.innerHTML = getImages(data.ImageURLS);
articleShare.innerHTML = getUrl(data.Articleurl);

1,
error: function () {
alert("An error has occured");

s

Finally, we removed the data distributed through AJAX from the main data query.

articlesByAdmin = this.db.Articles .Where(a => a.PublishStatus == Status.AdminPublished)
.Select(a => new ArticleVM
{
Articleld = a.ld,
ArticleTitle = a Title,
ArticleUrl = a.FriendlyURL,
ArticleDescription = a.Description.Substring(0, 134),
PublishStatus = a.PublishStatus,
Language = a.Language;

}) TolList();

Innovaatiot

Further methods:

LINQ commands

Call .SaveChanges() or .SaveChangesAsync() once

Let Entity Framework Data Context track the changes for you — because that is what it was
meant for! Everytime you call SaveChanges() a SQL INSERT command is sent to database,
and the non-async version will return for the response. To save time save all changes once.
Note: you must call SaveChanges for every data context you may use separately.

Use Find() instead of Where().Single()

When you are using primary key to search for items, prefer Find() instead of Where().First() or
Where.Single(). Not only does it show the intent of the call more clearly it only is (very) slightly
faster. First() and Single() both use an iterator to access the collection (lenumerable
interface) which will cause slight overheard.

Understand Single() vs. First()

Single() will verify that only one items exists in the collection. First() will return first element in
the collection. Single() is useful for catching potential problems in the database when you
expect only one element to be present. Both will throw an exception if no items exist. When
you are unsure if elements exist, use SingleOrDefault() or FirstOrDefault() which will return null
if no case no elements are found. Checking for null is faster than catching exceptions.

Use .Skip() and .Take() for paging

When paging items remember to use Skip() and Take() instead of first getting the whole
collection and using c# logic to page...

AddRange() and DeleteRange() for collections

.Add() command will call DetectChanges() in the context every time. However, when you use
AddRange() or DeleteRange() this command will be only ran once.

IList<Product> products = new List<Product>Q);
newStudents.Add(new Product() { Title="Coffee Maker” 1});
newStudents.Add(new Product() { Title="Teapot” 1});

using (var db = new Productbb())
{

db.Students.AddRange (newStudents) ;
db.savecChanges();

WOk

Innovaatiot

EF Optimizations

using or remember to Dispose the connection

Remember to close connections you use. Easiest using (BlogDb context
way is the using construct. Alternatively, call A B1ogbb(3)
BlogDb.Dispose(). // run db commands

}

Ensure your codebase is stable and mature enough to employ the below
optimization methods. These may cause more problems than they are worth
during the development phase...

.AsNoTracking()

This LINQ command will make Entity Framework tracking any changes on the result set. This
is useful when you only want to read data and you don’t expect to make any updates. While
you may achieve small performance improvements this may also lead to hard to debug
problems if requirements change in the future, and .AsNoTracking() is not seen.

Disable AutoDetectChanges for bulk updates

You can disable automatic detection of changes to save time. You may also disable
AutoDetectChanges for bulk updates, and then re-enable it after the updates. You can also
call dbContext.DetectChanges() manually.

dbContext.Configuration.AutoDetectChangesEnabled
BulkupdatesAndInserts(dbContext);

dbContext.Configuration.AutoDetectChangesEnabled

Disable ValidateOnSaveEnabled

For minor performance improvement you may disable validation during SaveChanges() if you
know the data is correct. You may also disable it to circumvent validation in Entity Framework
models. The problem is that SQL command will save in the database server if the data does
not fulfill database validation requirements. Getting the error back from SQL Server is way
slower.

dbContext.Configuration.validateonSaveEnabled = false;

Split database to multiple EF models

Entity Framework does not need to know about every table that is in your database. You may
be able to improve maintainability, and slightly performance, by splitting you data model to
multiple small entity models (data context'’s).

Innovaatiot

SQL Server optimization

Write direct SQL commands

Entity Framework is a good option for writing a large amount of varying data
calls. However, it will also add considerable overhead. Use direct SQL for reading
large amounts of data or bulk updates. Just understand the limitations, e.qg.
higher vulnerability to SQL injection attacks. Entity Framework has two
commands .SqlQuery and .ExecuteSqlCommand for sending direct SQL
Command. When SqlQuery is run from the correct contity class, EF will map the
data to the correct classes.

using (var context = new BloggingContext())
{
List<Blog> blogs = context.Blogs
.SqlQuery("SELECT * FROM dbo.BlogSet").ToList();
context
.Database.ExecutesqlCommand(
“UPDATE dbo.BlogSet SET IsDisabled=1");

Use stored procedures

SQL Server will need to parse SQL commands — as they are only text - and SQL
optimizer will then estimate what is the fastest execution strategy. This creates
overhead which can be overcome by using pre-built stored procedures. Stored
procedures can be precompiled, and they may also provide security benefits.

You can map stored procedures in Entity Framework Model Editor (EDMX Model) or
in code-first classes (EF6+ only). Code-first has two options:

1) Use conventions and name procedures in format
<type_name>_Insert, <type_name>_Delete,
<type_name>_Update and parameters with same name as properties.

2) Manually configure stored procedures as below

// Use naming conventions for stored procedures
modelBuilder.Entity<Blog>() .MapToStoredProcedures();

// Manually, set stored procedure names and methods
modelBuilder.Entity<Blog>() .MapToStoredProcedures(s => {
s.Update(u => u.HasName("modify_blog_url™)
.Parameter(b => b.Blogid, "blog_id")

.Parameter(b => b.url, "blog_url™)) ;
s.Delete(d => d.HasName("delete_blog")

.Parameter(b => b.Blogid, "blog_id"));
s.Insert(i => i.HasName("insert_blog")

.Parameter(b => b.Name, "blog_name")

.Parameter(b => b.url, "blog_url™));

iF

WOk

Innovaatiot

Optimization outside EF & LINQ

Use SqlBulkCopy or direct SQL for bulk insert/update / fetch

Entity Framework has overhead for every call as LINQ is ran against the EF datamodel which
is translated to SQL. Thus, this will be slower. Luckily, System.Data.SqlClient has function
SqlBulkCopy for bulk SQL commands.

Know when to use nvarchar and varchar

nvarchar stores Unicode data, and you almost always want to use it to enable
internationalization in the future. However, nvarchar uses 2 bytes per data which
means less can be indexed. Maximum index size in SQL Server is 900 bytes. You
may use varchar for ASCIl-only characters to get multiple columns included for
faster exact match queries.

Verify you use nvarchar or varchar in both EF and SQL Server

Entity Framework uses by default nvarchar. If you, however, decide to use varchar also setup
Entity Framework to use the same. You can do it by one these ways in EF code-first:

1. [column(TypeName = "VARCHAR")]
2. modelBuilder.Properties<string>().Configure(c => c.HasColumnType("varchar"));
3. modelBuilder.Properties<string>().Configure(c => c.IsUnicode(false));

Minor startup performance updates by pre-compilation

You may get minor startup time decreases by using ngen, and pre-compiling EF
views. This may be useful if you need to decrease program startup time by up to
few seconds. Likely, runtime performance will not be affected. You will need to
ensure the Entity Framework class library and the pre-compiled views stay up-to-
date, though.

Multiple result sets

Multiple Active Result Sets (MARS) is a feature that works with SQL Server to allow the
execution of multiple batches on a single connection. When MARS is enabled for use with
SQL Server, each command object used adds a session to the connection. Normally it is
enables if had EF tooling create the connection string. In case, you've manually created the
connection string you can enable it easily by inserting to connection string:

MultipleActiveResultSets=True;

WOk

Innovaatiot

Optimization options outside MVC, EF and LINQ

File system, indices, CDN

Do you need a SQL database?

If we are retrieving articles based on a single key we could also a well-tested system with
good performance - the file system. The file system is also a sophisticated database for
reading files. If we are mostly reading long texts and don't need complex queries we could
consider simple text files. This will simplify our setup and free up RAM and costs as we don't
need a database software or server. Drawbacks are, for example, all writes and updates lock
the file and we can not efficiently find files based on the content. If we always read all files
anyway or simply read files based on the name file system could be an option. We may
additionally create our own in-memory data structure for better performance.

Use a Content Delivery Network proxy

A good proxy server will cache our files. Combine it with a globally distributed Content Deliver
Network and you will have fast delivery for static content. Often, just a DNS update is required
to take benefit of the proxies. The biggest provider is CloudFlare.

Verify indices are used for all queries

A database has two options for fetching data: use a index, or go through all database rows
(perform a full-table scan). The challenges with indices is that only the first data column in an
index can be used for queries. This means you will need to verify that there is at least one
index that begins with one of the column set as the criteria for a LINQ call (the criteria in the
.Where() method). Additionally, you should verify all foreign keys (e.g. ArticlelD column) has
an index.

In our example, we should have at least one index beginning with:

ArticleSet.Articleld Primary Key
LinkSet.Articleld Foreign Key
AttachmentSet.Articleld ~ Foreign Key
CatgorySet. Articleld Foreign key

ArticleSet.PublishStatus ~ Often used query criteria

Indices are a powerful way to improve database performance. How to create powerful indices
and avoid full-table scans is an important topic which probably has the best return on time
spent.

Resource utilization Example Of hOW addlng a
single index changed

resource consumption in a
large Azure SQL Database.

